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Abstract
The Keldysh Green’s function method is employed to study spin-dependent electron transport
through a Rashba ring with a quantum dot (QD) embedded in one of its arms. Zero charge bias
is applied on the system while a rotating magnetic field is considered in the QD to pump pure
spin current. The Rashba spin–orbital coupling (RSOC) can cause a spin precession phase of
the electron passing through the ring, so that the quantum interference in the ring can lead to a
spin-polarized charge current flowing in the leads and the arm without a QD, whereas only pure
spin current is flowing in the other arm with a QD. It is shown that for low frequency ω of the
rotating magnetic field, the pumped charge current is proportional to ω unlike the charge current
produced by mono-parametric quantum charge pumping, which is usually proportional to ω2.
Moreover, the magnitude, the direction, as well as the spin-polarization of the charge current
can be controlled by tuning the device parameters such as the QD energy level, the RSOC
strength, and the strength of the electron tunneling between the leads and the QD. Hence the
studied device may serve as a generating source for tunable spin-polarized current in the
spintronics field.

1. Introduction

Since Datta and Das [1] theoretically proposed the possibility
of the spin transistor almost two decades ago, spin-related
transport phenomena in semiconductor nanostructures has
attracted more and more attention [2–5]. This has resulted
in the emergence of semiconductor spintronics that aims
to develop spin-based electronic devices utilizing not only
the charge but also the spin degrees of freedom of an
electron. Because the spin-based electronic devices have many
advantages over the traditional ones [6] such as longer coherent
lifetime, faster data proceeding speed, and lower electric power
consumption, the subject of generating a spin-polarized current
through a mesoscopic system has become one of the key issues
in the field of spintronics and has prompted intense interest in
recent years.

At present, many methods for producing spin current
have been proposed in the literature [7–18]. For instance,
the spin-Hall effect exploiting the intrinsic spin–orbit coupling
in nonmagnetic semiconductors [7, 8] offers an effective
way to generate a dissipationless spin current. The generic
magnetic means for producing spin current mainly includes

spin injection from magnetic materials [9–12] and spin
pumps [13–18] driven by time-dependent external fields. Wang
et al proposed a spin field effect transistor (SFET) [13] which
operates with a rotating magnetic field (RMF). While the
original spin-degenerate electron levels in the scattering region
are split by the static longitudinal component of the RMF, the
rotating transverse component of the RMF couples the two
Zeeman levels and makes transition between them possible.
An electron can then tunnel into the spin-down level from an
external lead and then it will tunnel out of the scattering region
with up-spin by a spin-flip process due to the transverse RMF,
leaving behind a spin-down hole, which will subsequently be
filled with an incoming electron from the external lead again.
This cyclic process leads to a spin current flowing in the device.
As the source–drain bias is zero, only a pure spin current
is pumped out by RMF without any accompanying charge
current.

Recently, much attention has also been paid to the spin-
dependent transport phenomena in various kinds of ring-type
or two-path semiconductor structures, such as an Aharonov–
Bohm (AB) ring [19–21], a Stern–Gerlach ring [22], an
Aharonov–Bohm–Casher ring coupled to a QD [23], a ring
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with serially coupled double quantum dots [24], an AB ring
with a QD embedded in one of its arms [25], a two-path
semiconductor device [26], and so on. In these systems,
the presence of the Rashba spin–orbit coupling (RSOC) can
cause the electrons moving through the ring to acquire a
spin-dependent phase (Aharonov–Casher (AC) phase). The
resultant spin-dependent phase difference alone or together
with some other nondispersive phase (e.g. an AB phase
induced by an external magnetic field perpendicular to the
ring) can result in an interesting spin-interference effect that
makes the system conductance spin-polarized, i.e. a spin-
polarized current can be achieved with an unpolarized injecting
charge current. By using a gate voltage to vary the RSOC
strength [27, 28], both the magnitude and spin-polarization of
the generated current can be tuned conveniently. While many
works have been dedicated to exploiting the spin-pump or spin-
interference effect to realize the generation of a spin-polarized
current, the combined effect of the two effects on the spin-
polarized transport in a nanostructure is still lacking attention.
In the present work, we demonstrate that the combined effect of
spin-pump and spin-interference can give rise to a controllable
spin-polarized charge current in a one-dot Rashba ring device
at a zero bias. In the proposed device, a rotating magnetic field
is applied to the quantum dot (QD) embedded in one of the
arms of the ring, which plays the role of a spin-pump source.
With the help of the Keldysh Green’s function technique, we
show that a spin-polarized charge current can flow in the
system without any external bias, because the quantum spin-
interference effect in the ring breaks the symmetry of up-spin
and down-spin current of the pure spin current generated by
the RMF. The spin-polarized charge current is proportional to
the driving frequency ω and its magnitude, direction, and spin-
polarization can be modulated by tuning the device parameters
such as the energy level in the QD, the RSOC constant, as
well as the coupling strength between the leads and ring. Of
particular interest is that a fully spin-polarized charge current
(one spin species current is suppressed) can be achieved,
i.e. spin injection with 100% efficiency can be realized in our
proposed device.

This paper is organized as follows. In section 2, we
introduce the model and present the formulae to calculate the
generated spin-polarized current in the presence of the RMF.
In section 3, the corresponding numerical results are given. In
section 4, a brief conclusion is presented.

2. Model and formulation

We consider a two-terminal device in which a Rashba ring
in the x–y plane is connected with the left and right normal
leads, as schematically shown in figure 1, a noninteracting
QD sits on one arm of the ring (say upper arm), and an
RMF is applied on it. The RMF rotates with angular
frequency ω around the z-axis with a tilt angle θ and is
expressed as: B = (B0 sin θ cos ωt, B0 sin θ cos ωt, B0 cos θ)

with B0 being the constant magnetic field strength. The
z component Bz = B0 cos θ gives a Zeeman split to the
original spin-degenerate dot levels. The transverse component
(B0 sin θ cos ωt, B0 sin θ cos ωt) in the x–y plane provides
a spin-flip mechanism between the two Zeeman levels. A

θ

Figure 1. The scheme of the device considered in this work, a
one-dot Rashba ring coupled to two leads. The ring, which lies in the
x–y plane, contains a dot embedded in its upper arm and the RSOC
is considered in the ring. An RMF, which here plays the role of a
spin-pump source, is applied to the dot.

uniform RSOC is considered in the ring and it can induce
a spin-dependent phase shift σϕ (AC phase) of electron
tunneling through the ring with ϕ = −αmL/h̄2 with m the
effective mass of an electron, α the RSOC strength, and L the
length of the ring. In our model, the phase shift σϕ from RSOC
is considered between the QD and right lead without loss of
generalization, which can certainly denote a hybrid ring with
nonuniform RSOC. The one-dot Rashba ring device with the
RMF can be described by the following Hamiltonian:

H =
∑

α=L,R

Hα + HD + H ′(t) + HT, (1)

with

Hα =
∑

kσ

εαkC†
αkσ Cαkσ , (2)

HD =
∑

σ

(εd + σμB Bz)d
†
σ dσ , (3)

H ′(t) = γ e−iωt d†
↑d↓ + h.c., (4)

HT =
∑

kk′σ
tLR(C†

Lkσ CRk′σ + C†
Rk′σ CLkσ )

+
∑

kσ

(tLdC†
Lkσ dσ + tRd eiσϕC†

Rkσ dσ ) + h.c., (5)

where Hα(α = L, R) describes the left and right normal leads
with εαk the single spin-degenerate electron energy in the α

lead; C†
αkσ (Cαkσ ) is the creation (annihilation) operator; HD

models the QD which consists of a single energy level εd

and a Zeeman splitting σμB Bz under the z component of the
RMF. d†

σ (dσ ) denotes the creation (annihilation) operator for
the electron with spin σ in the QD; H ′(t) is the transverse
component of the RMF with γ = μB B0 sin θ ; HT denotes
the tunneling part of the Hamiltonian where tLR, tLd , tRd are
all the tunneling coefficients and assumed to be real for easy
derivation; the extra phase iσϕ arises from the existence of the
RSOC.

We proceed to work out the pumped current in the device
described above and stress again that there is no bias applied
on the system. The electronic current per spin channel flowing
from the left lead to the ring can be obtained from the time
evolution of the occupation number for electrons with the
corresponding spin in the left lead, i.e.

ILσ (t) = −e〈dNLσ /dt〉 = ie

h̄
〈[NLσ , H ]〉,

NLσ =
∑

k

C†
Lkσ CLkσ ,

(6)
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where [· · ·] and 〈· · ·〉 denote operator commutation and thermal
average, respectively. Using the Keldysh Green’s function
method, equation (6) can be expressed as

ILσ (t) = e

h̄
[tLd G<

dσ,Lσ (t, t) + tLRG<
Rσ,Lσ (t, t) + c.c.], (7)

where G<(t, t ′) is the lesser Green’s functions defined as [25]

G<
ασ,α′σ ′(t, t ′) = i

〈∑

k′
C†

α′k′σ ′(t ′)
∑

k

Cαkσ (t)

〉
, (8)

G<
ασ,dσ ′ (t, t ′) = i

〈
d†

σ ′(t ′)
∑

k

Cαkσ (t)

〉
, (9)

G<
dσ,dσ ′(t, t ′) = i〈d†

σ ′(t ′)dσ (t)〉. (10)

By performing a double-time Fourier transform, the time-
averaged current with respect to ILσ (t) is given by [29]

ILσ = 2e

h̄

1

2Nτ
Re

∫
dE

2π
[tLd G<

dσ,Lσ (E, E)

+ tLRG<
Rσ,Lσ (E, E)], (11)

where G<(E, E) is the Fourier transform of G<(t, t), τ =
2π/ω is the rotating period of the RMF and N → ∞. To
solve the lesser Green’s function, we first consider the contour
ordered Green’s function in Keldysh space defined as [30–32]

Gc(t, t ′) =
(

Gt(t, t ′) G<(t, t ′)
G>(t, t ′) Gt̄ (t, t ′)

)
. (12)

where G>, Gt , and Gt̄ are the greater, time ordered, and
antitime ordered Green’s functions, respectively,

G>
ασ,α′σ ′(t, t ′) = −i

〈∑

k

Cαkσ (t)
∑

k′
C†

α′k′σ ′(t ′)
〉
, (13)

G>
ασ,dσ ′(t, t ′) = −i

〈∑

k

Cαkσ (t)d†
σ ′(t ′)

〉
, (14)

G>
dσ,dσ ′(t, t ′) = −i〈dσ (t)d†

σ ′(t ′)〉, (15)

Gt(t, t ′) = θ(t − t ′)G>(t, t ′) + θ(t ′ − t)G<(t, t ′), (16)

and

Gt̄ (t, t ′) = θ(t ′ − t)G>(t, t ′) + θ(t − t ′)G<(t, t ′). (17)

The four component Green’s functions of Gk are not
completely independent. They are related by

Gt = G< + Gr, (18)

Gt̄ = G< − Ga, (19)

and
G> = Gt − Ga. (20)

Here Gr(a) is the usual retarded (advanced) Green’s function
and its definition is

Gr(a)

ασ,α′σ ′(t, t ′) = ∓iθ(±t∓t ′)
〈[∑

k

Cαkσ (t),
∑

k′
C†

α′k′σ ′(t ′)
]〉

,

(21)

and Gr(a)

ασ,dσ ′ (t, t ′), Gr(a)

dσ,dσ ′(t, t ′) are defined in the same
manner.

In a time-dependent problem, it is convenient to adopt the
perturbation theory to calculate the contour ordered Green’s
function Gc because it fulfils the Dyson equation

Gc(t, t ′) = Gc0(t, t ′)+
∫

dt1Gc0(t, t1)V c(t1)Gc0(t1, t ′)+· · · ,
(22)

with Gc0 being the contour ordered Green’s function when
the time-dependent potential V c is zero. With the Fourier
transform, we can obtain the second order of (vc)2 with the
following equation

Gc(E, E ′) = Gc0(E, E ′) + �(1)Gc(E, E ′)
+ �(2)Gc(E, E ′) = 2πGc0(E)δ(E − E ′)
+ Gc0(E)V c(E − E ′)Gc0(E ′)

+
∫

dE1

2π
Gc0(E)V c(E − E1)Gc0(E1)

× V c(E1 − E ′)Gc0(E ′), (23)

where �(1)Gc(E, E ′) and �(2)Gc(E, E ′) are the first-order
and second-order corrections to the unperturbed contour
ordered Green’s function Gc0(E, E ′), respectively. In the
perturbation formula above, we treat the time-dependent
component of the RMF H ′(t) as the perturbation and in the
Keldysh space the perturbation potential V c(E) is defined as

V c(E) =
(

V (E) 0
0 −V (E)

)
, (24)

where V (E) in spin space is given by Vdσ,dσ̄ (E) = 2πγ δ(E −
σω)(σ = ±; ↑,↓ and σ̄ = −σ), which can be directly
obtained from the Fourier transform of H ′(t). In the later
calculations, the unperturbed contour ordered Green’s function
Gc0 can be neglected because without the perturbation, the
system is in the equilibrium state and Gc0 can only result
in a persistent spin current circulating in the ring [33]
whose magnitude is negligibly small. Moreover, through our
derivation, the first-order correction �(1)Gc in equation (23) is
found not to contribute to the generation of any current [31].
Thus when evaluating G< that is directly related to the spin-
resolved current ILσ in equation (11), we only need keep its
second-order correction, and we can get

�(2)G< ∼ Gr0V cGr0V cG<0 + Gr0V cG<0V cGa0

+ G<0V cGa0V cGa0, (25)

where Gr0, Ga0, and G<0 are, respectively, the retarded,
advanced, and lesser Green’s functions in the equilibrium state
without the transverse RMF and they satisfy the well-known
relation G<0 = f (E)(Ga0 − Gr0) with the Fermi distribution
function f (E). With these preparations above, we obtain

ILσ = IL1σ + IL2σ , (26)

IL1σ = 2eγ 2

h̄
Re

∫
dE

2π
tLd [ f (E) − f (E − σω)]

× {Gr0
dσ,dσ (E)[Gr0

dσ̄ ,dσ̄ (E − σω)

− Ga0
dσ̄ ,dσ̄ (E − σω)]Ga0

dσ,Lσ (E)}, (27)
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and

IL2σ = 2eγ 2

h̄
Re

∫
dE

2π
tLR[ f (E) − f (E − σω)]

× {
Gr0

Rσ,dσ (E)
[
Gr0

dσ̄ ,dσ̄ (E − σω)

− Ga0
dσ̄ ,dσ̄ (E − σω)

]
Ga0

dσ,Lσ (E)
}
, (28)

where IL1σ and IL2σ denote the spin-resolved currents flowing
through the arm with the dot (upper arm) and the arm without
the dot (lower arm), respectively.

To solve Gr(a)0, we use the Dyson equation

Gr(a)0
σ = gr(a)

σ + gr(a)
σ �r(a)

σ Gr(a)0
σ , (29)

where the equilibrium retarded (advanced) Green’s function
Gr(a)0

σ in the local basis is a 3 × 3 matrix

Gr(a)0
σ =

⎡

⎢⎣
Gr(a)0

Lσ,Lσ Gr(a)0
Lσ,Rσ Gr(a)0

Lσ,dσ

Gr(a)0
Rσ,Lσ Gr(a)0

Rσ,Rσ Gr(a)0
Rσ,dσ

Gr(a)0
dσ,Lσ Gr(a)0

dσ,Rσ Gr(a)0
dσ,dσ

⎤

⎥⎦ . (30)

By the equation of motion method [34] and with the wide-band
approximation [35], the Green’s function of the isolated system
(i.e. when tLR = tLd = tRd = 0) gr(a)

σ is given by

gr0
σ (E) =

⎡

⎣
−iπρ 0 0

0 −iπρ 0
0 0 1

E−εd−σμB Bz+i0+

⎤

⎦ , (31)

and
ga0

σ (E) = [gr0
σ (E)]†, (32)

with ρ denoting the density of states of the leads at the Fermi
level. For our present case, the self-energy is from the coupling
between the two leads and the ring,

�r
σ (E) =

⎡

⎣
0 tLR tLd

t∗
LR 0 tRd eiσϕ

t∗
Ld t∗

Rd e−iσϕ 0

⎤

⎦ . (33)

With equations (27)–(33) and some direct algebra, we can
obtain the charge and spin currents flowing though the left lead
as

IL1 = IL1↑ + IL1↓ = 0, (34)

JL1 = IL1↑ − IL1↓

= 8eγ 2

h
t2t2

Ld(t
2
Ld + t2

Rd)(t
2 + t2

LR)

×
∫

dE
f (E) − f (E − ω)

X↑(E)X↓(E − ω)
, (35)

IL2 = IL2↑ + IL2↓

= 8eγ 2 sin ϕ

h
ttLRtLd tRd(t

2
Ld + t2

Rd)(t
4 − t4

LR)

×
∫

dE
f (E) − f (E − ω)

X↑(E)X↓(E − ω)
, (36)

JL2 = IL2↑ − IL2↓

= 8eγ 2

h
t2t2

LR(t2 + t2
LR)(t4

Rd − t4
Ld)

×
∫

dE
f (E) − f (E − ω)

X↑(E)X↓(E − ω)
, (37)

with t = 1/πρ and Xσ (E) = [(E − εd − σμB Bz)(t2 +
t2
LR)+2tLRtLd tRd cos ϕ]2 + t2(t2

Ld + t2
Rd)

2. Here IL1(2) and JL1(2)

represent the tunneling charge and spin current flowing from
the left lead to the upper (lower) arm, and subsequently the
total charge and spin currents are given by IL = IL1 + IL2,
JL = JL1 + JL2. Equations (34)–(37) form the main results
of this paper, which indicate clearly that a nonzero spin and
charge current can flow in the one-dot Rashba ring device
without external bias.

The generated currents have some conspicuous character-
istics. Firstly, only a pure spin current JL1 can flow in the upper
ring arm (see equations (34) and (35)), which cannot contribute
to the charge current but only to the spin current in the left lead.
This pure spin current JL1 is driven by the RMF, and it de-
pends on the strength of the transverse component of the RMF
γ as well as the rotating frequency ω. The RSOC in the ring
can only affect the magnitude of the pumped spin current JL1

through the quantity Xσ (E). Secondly, in the lower arm with-
out QD, a nonzero charge current IL2 emerges accompanied by
a spin current JL2 so that IL2 is generally spin-polarized. In
the same way as JL1, the spin current JL2 is also pumped by
the RMF and can be modulated by device parameters such as
the RMF strength γ , the rotating frequency ω, the tunneling
coefficients tLd , tRd , and tLR. Especially, if tLd = tRd , the spin
current JL2 will vanish, which indicates that the current flow-
ing in the lower arm comes from the interference effect since
at this symmetric case the spin current is absent, therefore, the
spin-polarization of IL2 can be modulated by device parameters
and can even be unpolarized or fully-polarized. Different from
the current flowing in the upper arm where the pure spin cur-
rent is driven by the RMF, the RSOC is decisive to the induced
charge current IL2, i.e. when there is no RSOC or ϕ = nπ with
n an integer, the charge current will disappear, since the charge
current IL2 is the result of the interplay between the spin-pump
effect driven by RMF and the quantum interference effect in
the ring induced by the spin precession phase ϕ, thus the tun-
neling coefficients tLd , tRd , and tLR are all prerequisites for the
generation of the charge current as shown in equation (36). Fi-
nally, since IL = IL1 + IL2, JL = JL1 + JL2, the charge cur-
rent in the left lead is only contributed by the one in the lower
arm (without a QD), i.e. IL = IL2, and must be spin-polarized.
Here, it should be noted that though IL = IL2, spin-polarized
charge currents IL and IL2 have different spin-polarization de-
grees, because the inequality JL �= JL2 always holds according
to equation (37) and the relation JL = JL1 + JL2.

3. Numerical calculations and discussions

In this section, we present our numerical results of the
pumped current based on equations (35)–(37). In all numerical
calculations the Fermi energy of the system is taken as the
energy reference, EF = 0, and t = 1/πρ = 1 is taken as the
energy unit, the temperature is zero T = 0. We first present
the charge current IL as a function of the single energy level
in the QD εd for different spin precession phases ϕ, since εd

can be easily controlled by a gate voltage in reality. As is
shown in figure 2, the charge current varies sensitively with the
dot level and has a sizable value at its resonant peak, which

4
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Figure 2. The induced charge current IL as a function of the dot level
εd for different spin precession phases. The other parameters are
μB Bz = 0.1, γ = 0.1, ω = 0.05, tLR = 0.6, tLd = 0.8, and tRd = 1.

is determined by εd and ϕ. The RSOC can affect both the
magnitude of IL and its resonant energy, which is clearly shown
in the quantity X E in equations (35)–(37), and obviously the
resonant energy is at EF = εd with ϕ = π/2.

The charge current IL versus the precession phase ϕ is
plotted in figure 3. Different from that shown in figure 2,
both the magnitude and the sign of the charge current can vary
with ϕ. As can be seen, it is a sinusoid-like function of the
spin precession phase ϕ and oscillates with period 2π . When
ϕ = 0, i.e. the RSOC is absent, the charge current disappears.
This is because the charge current results from the transfer
from the spin current pumped by the RMF due to the quantum
interference effect of the RSOC induced spin precession phase.
According to equation (36), at ϕ = nπ(n = ±1,±2, . . .),
the quantum interference in the ring reaches its destructive
points and thus the charge current also disappears, as shown
in figure 3. Since the RSOC strength can be tuned by a gate
voltage in experiments [27, 28], we can modulate the charge
current in its magnitude and direction electrically.

In figure 4, the charge current IL is depicted as a function
of the rotating frequency ω. As is known, the mono-parametric
charge pump cannot survive in the adiabatic regime (ω ∼ 0)
and has a quadratic dependence on ω in the finite pumping
frequency regime when the spatial inversion symmetry of the
system is broken. In our device, the current direction can be
modulated by ϕ, which is related to the spatial configuration
of the system. When we carry the inversion operation on
the system, ϕ → −ϕ and IL → −IL although the device
itself remains unchanged. As shown in figure 4, the charge
current IL is linear with ω at low frequency, which reflects
that the charge current comes from the interplay between the
spin-pump effect and the quantum interference effect since the
pumped pure spin current by the RMF is linearly dependent on
ω at low frequency. Therefore, the generated charge current in
our device does not vanish at the adiabatic limit although there
is only one pumping source.

We proceed to investigate the spin-polarization degrees of
IL2 and IL, which are defined as η2 = JL2/IL2 and η = JL/IL

Figure 3. The induced charge current IL as a function of the spin
precession phase ϕ for different dot levels. The other parameters are
the same as those in figure 2.

Figure 4. The dependence of current IL on the rotating frequency ω
for different dot levels. The spin precession phase is taken as
ϕ = π/3. The other parameters are the same as those in figure 2.

respectively. Figure 5 shows the spin-polarization degree η2

of the current flowing in the lower arm of the ring. As is
shown, η2 is dependent on the tunneling coefficient tLd and
can even reverse its sign. Of particular interest is the case of
η2 = ±1, i.e. the charge current is fully spin-polarized and
only one spin species current can flow in the lower arm of the
ring, i.e. IL2↑ �= 0 and IL2↓ = 0 as η2 = 1 and vice versa
as η2 = −1. As tLd = tRd = 1 irrespective of whatever
other parameters are, the spin-polarization degree η2 = 0
and the charge current is not spin-polarized, as stated early,
the spin current of JL2 vanishes at the symmetric coupling
tLd = tRd due to the quantum interference effect. From
figure 5, it can be seen that the spin-polarization in the lower
arm can be arbitrarily controlled, which is useful in spintronics
to manipulate the spin efficiently.

The spin-polarization degree of the total current in the
left lead η is presented in figure 6 as a function of the spin
precession phase ϕ. It shows that with an appropriate choice
of the other parameters, η can vary with ϕ from −1 to 0 and
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Figure 5. The spin-polarization degree η2 versus the tunneling
coefficient tLd for different spin precession phases. The other
parameters are εd = 0.01, μB Bz = 0.1, γ = 0.1, ω = 0.05,
tLR = 1.5, and tRd = 1.

Figure 6. The spin-polarization degree η dependence on the spin
precession phase for different tunneling coefficients tLd and tLR. The
other parameters are εd = 0.1, μB Bz = 0.1, γ = 0.1, ω = 0.05, and
tRd = 1.

the zeroth value of η can only be approached but cannot be
reached, because in the presence of the RMF the spin current
JL1 always exists and contributes to the spin current JL so that
the charge current IL can never be unpolarized. Hence, the
fully spin-polarized charge current can also flow in the lead
besides IL2 discussed above. It is noted that the value of η can
vary between 0 and 1 when the phase ϕ in figure 6 shifts with
π . In other words, the spin-polarization of the charge current in
the left lead can also be almost arbitrarily modulated between
−1 and +1 (except 0) by tuning the RSOC strength with the
other parameters fixed.

For a uniform RSOC ring [36], the AC phase ϕ is
estimated to be 7.4π for a 0.3 μm ring radius with the RSOC
constant α ∼ 1.05 × 10−11 eV m, which is sufficient for
modulating the generated spin-polarized current. Such a size

is also enough to maintain the quantum spin-interference effect
in the ring. Hence, the proposed device can work well so long
as it is kept clean and at an appropriate temperature.

4. Conclusion

In summary, we have studied the spin-polarized transport
through a two-terminal one-dot Rashba ring device driven
by an RMF. Due to the coexistence of the pure spin
current pumped by the RMF and the spin-dependent quantum
interference effect in the ring from the AC phase, a spin-
polarized charge current, which is proportional to the rotating
frequency of the RMF, can be generated in the lead and
the arm without the QD. By tuning the device parameters
such as the dot energy level, the RSOC strength, and the
tunneling strength, the spin-polarized charge current can be
easily modulated in magnitude, direction, and even its spin-
polarization degree. The proposed device may act as an
efficient generator of a tunable spin-polarized current with
arbitrary spin-polarization degree in spintronics.
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